Continuously perfused, non-cross-contaminating microfluidic chamber array for studying cellular responses to orthogonal combinations of matrix and soluble signals.
نویسندگان
چکیده
We present a microfluidic cell culture array with unique versatility and parallelization for experimental trials requiring perfusion cultures. Specifically, we realize a rectangular chamber array in a PDMS device with three attributes: (i) continuous perfusion; (ii) flow paths that forbid cross-chamber contamination; and (iii) chamber shielding from direct perfusion to minimize shear-induced cell behaviour. These attributes are made possible by a bridge-and-underpass architecture, where flow streams travel vertically to pass over (or under) channels and on-chip valves. The array is also designed for considerable versatility, providing subarray, row, column, or single chamber addressing. It allows for incubation with adsorbed molecules, perfusion of differing media, seeding or extraction of cells, and assay staining. We use the device to characterize different phenotypes of alveolar epithelial type II (ATII) cells, particularly the extent of epithelial-to-mesenchymal transition (EMT), a highly suspected pathway in tissue regeneration and fibrosis. Cells are cultured on combinations of matrix proteins (fibronectin or laminin by row) and soluble signals (with or without transforming growth factor-beta1 by column) with two repeats per chip. Fluorescent assays are performed in the array to assess viability, cytoskeletal organization, and cell-cell junction formation. Assay and morphological data are used to tease-out effects of cues driving each phenotype, confirming this as an effective and versatile combinatorial screening platform.
منابع مشابه
Phased array ultrasonic imaging using an improved beamforming based total focusing method for non destructive test
One of the novel ultrasonic phased array based scanning methods for ultrasonic imaging in non-destructive test is total focusing method (TFM). This method employs maximum available information of the phased array elements and leads to an improved defect detection accuracy compared to conventional scanning methods. Despite its high detection accuracy, TFM behaves weak in distinguishing the real ...
متن کاملPhased array ultrasonic imaging using an improved beamforming based total focusing method for non destructive test
One of the novel ultrasonic phased array based scanning methods for ultrasonic imaging in non-destructive test is total focusing method (TFM). This method employs maximum available information of the phased array elements and leads to an improved defect detection accuracy compared to conventional scanning methods. Despite its high detection accuracy, TFM behaves weak in distinguishing the real ...
متن کاملA microfluidic device with groove patterns for studying cellular behavior.
We describe a microfluidic device with microgrooved patterns for studying cellular behavior. This microfluidic platform consists of a top fluidic channel and a bottom microgrooved substrate. To fabricate the microgrooved channels, a top poly(dimethylsiloxane) (PDMS) mold containing the impression of the microfluidic channels was aligned and bonded to a microgrooved substrate. Using this device,...
متن کاملT Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray
OBJECTIVE Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both...
متن کاملElastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis.
Mechanotransduction is known as the cellular mechanism converting insoluble biophysical signals in the local cellular microenvironment (e.g. matrix rigidity, external mechanical forces, and fluid shear) into intracellular signalling to regulate cellular behaviours. While microfluidic technologies support a precise and independent control of soluble factors in the cellular microenvironment (e.g....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2010